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abstract. — The term “ghost imaging” was coined in 1995 when an optical correlation 
measurement using biphoton light from a parametric downconversion crystal was used to 
reconstruct an image of a mask by raster-scanning a detector in an empty optical channel. 
The ability to image objects nonlocally using only a “bucket” detector in the object channel 
and placing all high-resolution optics in the empty reference channel was found appealing 
by many scientists. The most important steps towards making this technique practical were 
understanding that thermal light sources can be used instead of biphoton sources, and that 
a bucket detector placed immediately after the object can be replaced by a distant point-
like detector. We investigate the possibility of the next step, which would be to remove the 
optical beam splitter, which so far has been an indispensable part of ghost imaging with 
thermal light. In our approach, the object itself takes on the function of the beam splitter. 
If successful, this approach will allow for real-world application of the correlation imaging 
technique, even for the astronomical observations. 

I. Why Ghost Imaging in Space? Motivation and History

Direct intensity measurement, by an eye or by a detector, has always been the foundation 
of observation astronomy. Sometimes this technique is successfully complemented by other 
types of measurements; for example, those relying on intensity correlations. The first and 
perhaps the most famous example of intensity interferometry applied in astronomy is the 
measurement of the angular size of a star by R. Hanbury Brown and R. Q. Twiss in 1957 [1]. 
The intensity correlation technique remains powerful and efficient to date. Fifty years after 
the pioneering work, a space-deployable version of this approach has been suggested [2]. 

A very different area of science from astronomy actively utilizing intensity correlations as a 
measurement tool is quantum optics. In particular, photon coincidence measurements have 
allowed for the study of nonclassical optical fields whose photons are emitted as tightly 
correlated pairs; e.g., in a process of parametric downconversion. Parametrically produced 
photons are not only tightly correlated in time, but also in space. This spatial correlation 
can predict the detectable “location” of one photon based on the observation of the other 
with a better resolution than a direct-intensity measurement. This fact has led to the idea of 
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ghost imaging, which was first experimentally realized in 1995 [3]. The term “ghost imaging” 
describes a correlation measurement when the object’s image (or diffraction pattern [4]) is 
observed in the empty reference channel by a gated photon counting. The gating is ob-
tained by photon detections in the object channel, which lacks any spatial resolution, as 
illustrated in Figure 1. 
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Figure 1. Simplified illustration of the original ghost imaging experiment [3]. A mask with letters “UMBC” is placed 

in the object channel, where all light is collected by a “bucket” detector. Nonetheless, an image is reconstructed 

by correlating this detector’s photon counts with those from another detector, raster-scanning the empty refer-

ence channel. A sharp image is observed when a modified thin lens equation is fulfilled: 1/(a1 + a2) + 1/b = 1/f.

Besides its significance for the field of quantum optics, the ghost imaging technique has 
a few apparent practical advantages. Since no spatial resolution in the object channel is 
required, a very primitive single-pixel optical sensor could be placed in this channel, with 
the more advanced optics responsible for the image quality placed in the reference chan-
nel. This could be convenient for imaging of hard-to-access objects. The ghost imaging is 
especially beneficial for imaging the objects at “inconvenient” wavelengths, such as far-
infrared, while the reference channel wavelength is visible [5]. Furthermore, the coincidence 
measurement technique is more robust in the presence of the optical background illumina-
tion. Finally, the possibility of surpassing the diffraction limit in ghost imaging has been 
discussed. However, here one should be careful to acknowledge that while the transverse 
intensity correlation of parametric photons is not constrained by the signal or idler wave-
length diffraction, it is constrained by the pump wavelength diffraction.  

Despite the apparent potential advantages, the first realization of ghost imaging was ex-
tremely far from any practical applications, and especially from astronomy. Indeed, the need 
for a laser-pumped source of photon pairs and the requirement to collect all light in the 
object channel (which means that the object has to be placed immediately before the collec-
tion optics) effectively ruled out such applications in astronomy or space physics. 

Ten years after the initial ghost imaging demonstration, it was shown that the two-photon 
correlation properties of common thermal light are applicable for ghost imaging [6–8]. This 
may be considered as a first step towards ghost imaging in space. Since thermal light sources 
are much more abundant than parametric light sources, and in particular in space, this step 
was very important. Next, it was shown that collecting all the light in the object channel 
(the bucket detection) is not required and some portion of scattered light could be collected 
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instead [9]. This has allowed the object to be placed at a large distance from the observer. 
However, using a thermal light source brings about a new complication: a beam splitter 
that has to be placed between the source and the object. This beam splitter is needed to 
create the reference channel, whose speckle pattern duplicates that in the object channel, 
enabling the intensity correlation imaging. Such a geometry can be easily implemented in a 
lab, but becomes problematic when both the source and object are located far in space.

In this article, we investigate the possibility of ghost imaging in space by addressing the 
beam splitter issue. Our approach is illustrated in Figure 2. The underlying idea of our ap-
proach is that an object that partially transmits and partially reflects or scatters light can 
itself play the role of the beam splitter. Moreover, even a perfectly opaque (but not black) 
scattering object may under certain conditions (as discussed below) create coherence 
between the transmitted and scattered light, which may be utilized for the intensity cor-
relation imaging. Since the object is present in both channels, this approach leads us away 
from “canonical” ghost imaging towards intensity interferometry of Hanbury Brown–Twiss 
type. The analogy and distinctions between these two types of imaging have been discussed 
in literature [10]. In our case, an important distinction is that we are not concerned with 
the angular size or other properties of the source, which will be assumed to be known. 
Instead, we will study the effect of the object’s geometry and location relative to the source 
and observer on the intensity correlation. We will attempt to restore these parameters from 
the correlation measurements and show that these results could provide important infor-
mation in addition to conventional direct observations.   

Figure 2. (a) Conceptual schematic of conventional thermal light ghost imaging setup, and (b) of our approach.  

S is a thermal light source, M is the object, D1,2 are detectors, 

and BS (not present in case [b]) is a beam splitter.

In addition to the configuration shown in Figure 2(b), we will consider the case when both 
detectors receive transmitted and scattered light. This case is more realistic when both ob-
servers are ground-based and the distant source and object cannot be optically resolved.

In the following, we will develop and test a simple analytical model that will allow us 
to study the intensity correlation signatures of the simplest test objects. Based on this 
model, we will make predictions concerning the observability of various space objects and 
concerning their parameters that can be inferred from such observations. Potential space 
objects of interest will include Earth-like planets (including those near bright stars), gravita-
tional lenses formed by black holes or other massive objects, dust, or gas clouds.
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The rest of this article is organized as follows. In Section II, we will discuss the simplified 
geometry of the physical system under study and introduce its physical model. In Sec-
tion III, we will narrow this model to a particular but very important case of equal distances 
from the object to the detectors. This will allow us to carry out this analysis in the analyti-
cal form and gain the insight into its physical aspects by considering two simple model 
objects. We will also test some of our theory predictions by comparing them to the actual 
astronomy observation data, available from the Kepler mission. In Section IV, we briefly dis-
cuss the consequences of departing from the equal arms limit. In Section V, we will discuss 
the signal-to-noise ratio (SNR) in the correlation measurement and compare it to a direct 
intensity measurement. The results of our analysis will be summarized in Section VI.

II. 2D Source and Object Model in Paraxial Approximation

Let us consider a flat source and a flat object placed in the source and object planes where 
we introduce the local transverse coordinates tv and otv , respectively. Let Ls  be the distance 
between the source and object planes, and L ,1 2  the distances between the object plane and 
the planes of point-like detectors 1 and 2. The local transverse positions of these detectors 
are 1tv  and 2tv , respectively, as shown in Figure 3. 

Figure 3. Relative position of the source, object, and detectors in the flat paraxial model.

Let us assume that the source field is bound by a Gaussian envelope with the width Rs  and 
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2

2

t -
t

v . This model approximates the source with a diameter (inten-
sity distribution full width at half maximum [FWHM]) equal to R2 s . In the paraxial ap-
proximation, the field at detector 1 is related to the field of the source as the following:

( , ) ( , ) ( ) ( ) ( ) .E t d d e E t
c

L L
h T h, ,o R

s
L o o L o1 2 1

2 2
2

1
1 2,s s

2

2

1 2
t t t t t t t t t= -

+
- -

t
-v v v v v v v## (1)

Source
Plane

Object
Plane

Point-Like
Detector 2

Point-Like
Detector 1

L1,2Ls

Ro

r
o

r

f r
1

r
2

hs h1

h2

Rs



5

Although it looks complicated, Equation (1) is actually quite straightforward. It takes advan-
tage of the field propagation functions

( )h x
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e
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ikZ
ik
Z
x
2

2

m
=v

v

relating the electric field at two spatial points separated by a distance Z  in one direction 
and by a transverse displacement xv  (assuming that x Z% ; i.e., the paraxial approximation) 
in the transverse directions. A field produced by an extended source in a remote point is 
then given by a convolution of Equation (2) with the source’s own field distribution. This 
procedure yields the field distribution across the object. We multiply this by the object’s 
transmission function ( )T otv , which may be real (purely absorbing object), imaginary 
(purely phase object; e.g., a thin lens) or complex. Then we repeat the propagation and 
integration steps to obtain Equation (1), which is the field at the detector. A relation similar 
to Equation (1) can be written for the field at the other detector.

Let us consider the correlation-based ghost imaging. In this case, the observable is
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where the fields can be treated as quantum-mechanical operators, or as classical values. For 
thermal light, the phase-sensitive term in Equation (3) vanishes [11], and we arrive at
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where the first term describes the possible ghost image and the second term gives the 
uncorrelated “background” intensity product, which also describes the object’s shadow. 
To separate these effects, it is convenient to introduce the normalized Glauber correlation 
function [12]
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The Glauber correlation function will be our main observable in the following treatment. 
However, let us mention that other types of measurements are possible. In particular, one 
can measure higher-order correlation functions g( , )m n , or the variance of intensity difference 
(rather than a product) [13–15]. The analysis based on the field propagation equation, Equa-
tion (1), can be easily extended to these measurements. Such measurements will have differ-
ent dependencies on the optical mode structure and on the detector’s quantum efficiencies, 
and may offer interesting resolution–SNR trade-off opportunities. The possibility of utilizing 
these measurement strategies distinguishes our approach from the conventional intensity 
interferometry.

Substituting the fields ( , )E t1 1 1tv  and ( , )E t2 2 2tv  given by Equation (1) into Equation (5), we 
take into account the correlation property of the source field ( , )E ttv :

, ) ( , ) ( ) ( ),E t E t t t( ?G Ht t d t t C- -@ l l l lv v v v

(2)

(3)

(4)

(5)

(6)
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where C is a d-like function whose width corresponds to the optical coherence time. The 
latter may be determined by the spectral filters bandwidth. Unless we are interested in color 
imaging, using narrow-band filters is undesirable because they reduce the signal. On the 
other hand, short coherence time requires compatibly fast optical detectors and correlation 
circuitry, in order to ensure single longitudinal mode detection. Therefore, to carry out a 
fair comparison between the direct intensity measurement and the correlation measure-
ment, we need to take into account the photon flux reduction due to the minimal spectral 
filtering, required in the latter case. Let us assume a 1-ps timing accuracy and the central 
wavelength of 1 micron. At this wavelength, the 1-ps coherence time corresponds to a 
3.3-nm-wide spectral band. Comparing the optical power detected within this band to the 
total power within the typical band of a silicon photodetector (see Figure 4), we find that 
for a correlation measurement we have 0.5 percent of the power at our disposal than for the 
broadband intensity measurement. This reduces the SNR in a shot-noise-limited, narrow-
band measurement. The relative SNR will be more favorable for the correlation measure-
ment when compared to a color-resolved intensity measurement. In particular, no flux loss 
will be suffered if one is interested in a very narrow-band measurement; e.g., a measure-
ment with a specific spectral line. A more detailed discussion of the direct intensity vs. cor-
relation measurement SNRs will be given in Section V.
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Figure 4. The solar radiation normalized spectral density (from [16]), spectral sensitivity of  

a typical silicon photodiode, and their product.

Let us point out that in addition to the high speed and low jitter requirements on the 
photodetectors and correlation electronics, the broadband correlation measurement placed 
stringent requirements on the clock synchronization between the two detectors, as well as 
on the knowledge of their relative position L L1 2- .

To continue our analysis, we will assume that perfect synchronization between the detectors 
has been achieved and ( )t t 1C - =l  in Equation (6). We then suppress the temporal part of 
the problem. For the numerator in Equation (5), we derive
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In Equation (7), we have introduced ( )T , o1 2 tv  to allow the transmission functions to be 
different for detectors 1 and 2. This will allow us to consider the scenario when the object 
(partially) obscures the light source for one detector, and scatters it to the other. That is, the 
former detector receives the direct light from the source, but the latter only sees the light 
scattered by the object. In handling such situations, we still need to make sure the paraxial 
approximation holds, and that the approximation of a flat object remains reasonable.

For the following analysis, it will be convenient to introduce a correlation function
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for the fields emitted by an extended Gaussian source of thermal light that has a width Rs  
and is located at Z 0= , propagating to locations ( , )Za atv  and ( , )Zb btv . Equivalently, from the 
advanced wave perspective [17–19], it describes time-reversed propagation of a photon from 
( , )Za at- v  to the source, and then forward in time to ( , )Zb btv . If the source is infinitely large, 
Rs " 3, the aperture-limited propagation function, Equation (8), becomes equal to a point-
source propagation function from one detector to the other: 
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The two-point propagation function arises in Equation (5):
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and likewise for ( )G11 1tv  and ( )G22 2tv . To evaluate ( , ; , )G Z Z( )R
a a b b12

s t tv v  in a general form, we 
introduce polar coordinates such that 
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The angular integration in Equation (8) yields
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Then integrating over the radius, we obtain
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In the case of interest, Equation (10), we have Z Z La b s= = , which leads to
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where /( )q L kR2 s s
1 =-  is the speckle size. 

III. Balanced Arms Configuration

In this section, we consider the special balanced case when L L L1 2= = . While this case 
limits the possible observation scenario, it allows us to carry out exact analytical cal-
culations in many cases of interest, and to assess the practical utility of our approach. 
To carry out these calculations, it will be convenient to introduce the new coordinates 

( )/x 2o ot t= + lv v v  and ( )/y 2o ot t= - lv v v . Then substituting Equation (14) into Equa-
tion (10), we obtain
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The Gaussian term in Equation (15) arises from Fourier transform of the source field dis-
tribution. This suggests that Equation (15) could be generalized for any such distribution. 
However, at this stage we will limit our consideration to a Gaussian source. 

As a sanity check, we notice that if we “turn off” the object by setting ( , )S x y 1=v v , the inte-
gral over d x2  in Equation (15) yields ( ) ( )y2 2r d cD +v v . Then the d y2  integral yields, quite 
expectedly, the correlation function of a Gaussian source, Equation (14), with increased 
free-space propagation length L L Ls s" + :
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Let us now consider a few example objects and discuss their possible relevance for the as-
tronomy applications. 
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A. A Gaussian Absorber

This case can represent, e.g., a spherical dust or gas cloud of roughly uniform density. It 
also can be used as a crude model for a planet occluding a star. The transmission function 
of such an object can be modeled as 
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In Equations (18) and (19), T0  is the amplitude transmission of the most opaque (central) 
part of the object. Consequently, the correlation function also will consist of four terms: 
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To obtain G( , )a b12
1 , we substitute in Equation (20) 
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We notice that in the multimode case when the speckle size on the object greatly exceeds 
the object size, q q22 2.u . However, we do not need to make this approximation now.

First, let us investigate the result, Equation (20), for a set of parameters that can be eas-
ily implemented in a table-top experiment. In Figure 5, we show a correlation function 

( )g( )2 1 2t t=-v v  in Figure 5(a) and the intensity profile featuring the object’s shadow in  
Figure 5(b). In this simulation, the opaque (T 10 = ) object is placed between the source  
(R 1s = ) and the detector plane so that L L 50s = =  cm. The object size Ro  is varied from 
zero to 1, 2, and 3 mm. As the object becomes larger, its shadow becomes deeper and (less 
intuitively) the speckle size becomes smaller. For larger objects, the speckle shape also 
becomes distorted. Even less intuitive, evolution is undergone by the speckle size as the ob-
ject is moved across the line of sight imitating a planet passing across the star. The speckle 
first gets broader, and then narrower, reaching the minimum when the object is exactly on 
the line of sight (see Figure 6). To simulate this transient, we actually changed the detec-
tor’s position ( )/2d 1 2t t t= +  while the R 1o =  mm object was fixed on the initial line of 
sight at L L 50s = =  cm. The effective displacement of the object from the line of sight was 

(18)

(19)

(20)
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then found as /( )L L Lo d s st t= + . In Figure 6, we show the corresponding variation of the 
speckle width and of the intensity. Remarkably, the fractional variation of both values due 
to the transient object is approximately 7 percent. 

Figure 6. (a) Dependence of the correlation function g  (2)(Dρ) width, and (b) of the normalized photon flux 

on displacement of the object from the line of sight ρo, for a lab parameter set 

(T0 = 1, LS = L = 50 cm, RS = 1 cm, Ro = 1 mm).

Figure 5. (a) The correlation function g  (2)(ρ1,ρ2) versus the distance Dρ = ρ1 – ρ2 , and  

(b) the intensity profile for a lab parameter set (T0 = 1, LS = L = 50 cm, RS = 1 cm).  

The object size Ro is varied from zero to 1, 2, and 3 mm. 
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Let us now apply our model to an actual astronomical observation carried out by the Kepler 
space telescope [20,21]. Substituting in our model the Kepler-20f parameters [21], we find 
the relative intensity variation of the order of 10–4, which is consistent with the actual 
observation [21] (see Figure 7). In line with the earlier discussion, we use the planet radius 
times 2  as Ro . The disagreement in the dip shape arises from using the Gaussian absorber 
model while the actual planet is, of course, better described by an opaque disk. However, 
the numerical agreement with the experiment shows that even a simplistic, fully analytical 
Gaussian model can be useful. Following this model, we predict the variation of the speckle 
size from 3,604.0 m when the planet is out of the line of sight to 3,603.7 m when it is in 
the line of sight, which corresponds to the relative variation of 7.6 × 10–5 or, accounting for 
the off-axis speckle broadening, to approximately 1.4 × 10–4. Again, the magnitude of this 
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(21)

variation is very close to the magnitude of the photon flux variation. Of course, a detailed 
SNR analysis is required in order to conclude which type of planetary detection will be 
more efficient. Let us, however, point out that the measurement of the speckle width does 
not preclude the conventional intensity measurement, such as has been carried out in the 
Kepler experiment, and can be considered as an extension of such a measurement rather 
than its substitute. 
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Figure 7. (a) The intensity variation for Kepler-20e observed in [21],  

and (b) computed based on our model.

B. Phase Objects

Let us consider another model object allowing for the fully analytical treatment: a thin 
lens. The motivation for studying this example is the possibility to observe a purely phase 
object where direct intensity measurements may not be as efficient as with opaque objects. 
Examples of such objects in space may be gravitational lenses or dilute gas clouds. For an 
infinite thin lens with focal distance  f , 
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where ( / / / )D L L L f1 1 1s/ + -  is a dimensionless “out-of-focus” factor. If the lens images 
the source plane onto the detector plane, then D 0=  and the speckles become infinitely 
small while the intensity goes to infinity. The former is a consequence of our assumption, 
Equation (6), of a delta-correlated source field. The latter is a consequence of the paraxial 
approximation, as well as the coordinate-independent intensities in Equation (22). If the 

(22)
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source is in focus, then the light propagates as a collimated beam, D 1= , and the speckle 
size as well as the intensity in the detector plane will be the same as in the lens plane. 

Let us consider another example of a combined phase and amplitude lens–like object. This 
object has a finite extent and allows for the analytical treatment. Its transmission function 
is

( ) ( ) .T e e1 1o R f
ik

2 2
o

o o
2

2 2

t = - -
t t

- -v

This object can produce shadows very similar to those from a Gaussian absorber — see 
Figures 8(a) and (b). Therefore, it would not be possible to distinguish these two objects 
based on the intensity measurement. However, the behavior of the speckle widths is clearly 
distinct, as we see from Figures 8(c) and (d) (notice the difference in the signal magnitude, 
as well as in its character). This direct example demonstrates the potential the correlation 
measurement has for the object characterization, beyond its mere detection.

(23)
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Figure 8. (a) A shadow from a test object, Equation (23), with Ro = 3 mm and f = 1 m inserted between the source 

and detectors as a function of its distance from the line of sight; (b) a shadow from a Gaussian absorber with 

 Ro = 5 mm and T0 = 0.62; (c) and (d) the speckle width for (a) and (b), respectively.  

In this simulation, LS  = L1 = L2 = 50 cm, RS  = 1 cm.
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IV. Unbalanced Arms Configuration

In this section, we consider a more general case of L L1 2! , which may be important for 
an asymmetric configuration; e.g., when the correlation measurement is performed by 
a ground-based detector jointly with a distant space-based detector. We will continue to 
assume perfect time synchronization between the two detectors, or equivalently, a mono-
chromatic light source. However, we will not be able to carry out the analytical calculations 
without making some reasonable approximations. From Equation (13), we see that the large 

aperture approximation, Equation (9), holds if  

| |
.

kR Z Z

Z Z2
1s

s b a

a b
2/ %a

-

This approximation is appropriate for evaluation of the first-order terms in Equation (10), 
where Z Z Lb a 1- =  is large. Indeed, in this case, for the optics lab geometry 1m n= m and 

R L 1s s= =  cm, we get .1 6 10s
5#a = - . For the solar system geometry with R 7 10s

5#=  km 
(Sun radius), .L 1 5 10s

8#=  km (the distance from Earth to the Sun), and 1m n= m, we get 
5 10s

14#a = - . This parameter becomes even smaller for interstellar distances. Therefore, 
when we calculate G12 , Equation (10), for a Gaussian absorber described by Equation (18), 
the first-order terms can be approximated as 
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The opposite case of Equation (24) occurs when Z Za b= . If, furthermore, q2  is much 
greater than all coefficients that multiply 2t  in all real and imaginary exponents in Equa-
tion (10), then Equation (14) can be proven to approach a d-function normalized to unity. 
This is the small-aperture approximation, applicable for the second-order terms of Equa-
tion (10). Let us point out that within this approximation, the object cannot create coher-
ence between the transmitted and scattered light unless the speckle size in the object plane 
approaches or exceeds the size of the object itself.

It is easy to see that for the optics lab geometry as described above, q2  exceeds all relevant 
parameters by a factor of at least 3 104# . The excess factors are much greater in all reason-
able astronomical geometries. Therefore, we derive

( , ) ( ) ( ) .G d e h h( ) *
R L L12

2
1 2

2

1 2o
2

2

1 2
.t t t t t t t- -

t
-v v v v v v#

Therefore, for a Gaussian absorber case with L L1 2! , we have the following approximate 
expressions: 
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Let us first evaluate the correlation function g( )2  found by substituting Equation (27) into 
Equation (5) in the absence of the object, by setting R 0o = . In Figure 9(a), we show this 
function for typical optical lab parameters (L 551 =  cm, L L L2 1 D= + , L 55s =  cm, 1m n=  
where we assumed that the detectors are coplanar with the line of sight and lie on its op-
posite sides: 1 2t t=-v v . This allows us to use a single scalar parameter, tD , in the same way 
it was done in Figure 5.
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Figure 9. (a) The correlation functions g (2)(Dρ) in the absence of an object for RS = 1 cm, L1 = 55 cm, and  

L2 = L1 + DL; (b) the same correlation functions (solid lines) become narrower (dashed lines) when  

a small (Ro = 1 mm) Gaussian absorbing object is inserted in the line of sight  

at the distance LS = 55 cm from the source.

The correlation loss due to LD  is clearly visible. We would like to emphasize that this is not 
due to a limited longitudinal coherence of the source, but because of its transverse coher-
ence properties. We can interpret this result as follows. By placing the first detector in the 
plane L1, we define the speckle pattern in this plane as the transverse mode structure. These 
speckles may be further considered as mutually incoherent light sources. As light from 
these sources propagates further, the coherence areas expand as well as overlap. The expan-
sion causes the widening of the correlation function while the overlap causes the contrast 
reduction due to multimode detection. Using the expression ( ) /g m0 1 1( )2 = +  relating the 
correlation peak for thermal light to the number of detected modes m, we can determine 
that in our example the longitudinal displacement of the detector by L 6D =  mm has 
led to the number of detected modes m 3. . Note that this interpretation differs from the 
speckle pattern behavior that one might observe, e.g., on a screen. In this case, the speckles 
do not overlap and do not appreciably change in size for small longitudinal translations.

Now let us “turn on” the object and investigate its effect on the correlation function. If a 
small (R 1o =  mm) object is placed halfway between the source and the detectors, the cor-
relation function becomes narrower, which means smaller speckles — see Figure 9(b).

Let us point out that the L 0D =  case in Figure 9 is consistent with the R 1o =  mm case 
from Figure 5, which validates the large-aperture and small-aperture approximations for an 
absorbing object. On the other hand, we notice that it fails for a phase object such as a thin 
large lens. When the small-aperture approximation is utilized and Equation (14) is treated 
as a d-function, such object is “erased” by taking the absolute-square of ( )T ot .
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V. Signal-to-Noise Ratio Analysis

The sensitivity of the correlation-based measurements can be ascertained by a careful study 
of the SNR, which strongly depends on the object of interest and the imaging geometry. 
As a result, the value added by the correlation-based measurement can range from signifi-
cant to negligible. The quantitative analysis of the SNR for both types of measurements 
can leverage SNR calculations for Hanbury Brown–Twiss intensity interferometry, because 
performing ghost imaging at intergalactic scales often yields geometries wherein the detec-
tors are point-like (rather than bucket-like, which is more common in lab demonstrations 
of ghost imaging).

The ghost imaging configuration shown in Figure 3 consists of two point-like detectors, 
each measuring the incident far-field irradiance resulting from the thermal source and 
object combination. The correlation of the two photocurrent outputs isolates the common 
irradiance fluctuations at their respective transverse locations, yielding information on the 
mutual coherence function of the effective source created by the true source illuminating 
the object.  

Suppose the baseband envelope of the field incident on detector m , for ,m 1 2= , is de-
noted by ( )E tm  for t T0 < < , having units photons/s . Because we are considering thermal 
fields, we assume that the fields have zero mean (i.e., ( )E t 0mG H= ) and a complex degree of 
coherence

( )
| ( ) | | ( ) |

( ) ( )
t u

E t E u

E t E u
,

*

1 2

1
2

2
2

1 2/
G HG H

G H
c -

that is nonzero. We assume that the coherence time of the two fields (i.e., the time delay x 
for which ( ) ( )E t E t*

m mG Hx+  is appreciable) is equal and given by Tc .

We will carry the following analysis for the photo currents ( )i t1  and ( )i t2  produced by the 
detectors in response to the incident optical field. This analysis can be easily generalized for 
the photon-counting detectors. We have 

( ) | ( ) | ( ) | ( ),di t E t E h tm m m B
2G H h x x x= -#

and 

( ) ( ) | ( ) | ( ) | ( ) ( ) .di t i u E E h t h um m m m B B
2$G H h x x x xD D = - -#

Here, ( ) ( ) ( )i t i t i t/ G HD - , ( )h tB  denotes the real-valued baseband impulse response of the 
photodetectors with time constant (i.e., inverse bandwidth) equal to TB. With little loss in 
generality, we assume that ( )dt h t 0B =# , i.e., that the photodetectors are DC blocking, and 
that T TB c% , i.e., that the coherence time of the source is much longer than the response 
time constant of the photo detector. Note that the DC term is useful for direct intensity 
observations, thus it could be tapped off prior to the ( )h tB  filter. 

(28)

(29)

(30)
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The equal-time photocurrent correlation measurement performed at the receiver corre-
sponds to

( ) ( ),dC ti t i t
T

0
1 2/ #

where C  is repeated for every position of the two detectors. Thus, strictly speaking, Em, im  
and C should have two vector arguments indicating the positions of the two detectors in 
2D or 3D space. However, here we are concerned with the SNR at a particular position of 
these detectors, and therefore we are omitting these variables to avoid clutter. The SNR of 
the C  measurement is defined then as

( )
.SNR

C C

C
2

/
G G H H

G H

-

Calculating the first and second moments is tedious, but straightforward [11,22]. The SNR 
can be evaluated, in the T Tc B&  limit, as [22]
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where ( )0, ,1 2 1 2/c c , and ( / ) | ( ) |dN T T t E tc m
T 2

0
/ G Hh # , for ,m 1 2= , is the mean photoelec-

tron number per temporal mode (or equivalently per coherence time) of the fields incident 
on the detectors. The terms in the denominator have intuitive interpretations. The first 
term, which is independent of N, is due to the shot noise of the two detectors. The third 
term, with the N2  dependence, is excess noise resulting from the statistical fluctuations of 
the incident power on the detectors. This term is sometimes referred to as relative intensity 
noise. The middle term, with the N  dependence, is a result of the beating between the in-
tensity fluctuations and shot noise. In the shot-noise-limited regime, N 1%  holds, i.e., the 
mean number of photoelectrons per mode is very small, and the SNR can be approximated 
as 

| | .SNR
T
TT

N,
c

B
1 2

2c=

Therefore, the SNR has a linear dependence on the incident photon flux per mode. In the 
opposite regime with many photoelectrons per mode, thus N 1& , the SNR saturates to its 
maximum value
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c c
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For direct intensity measurements, we assume that a simple photon bucket operation is 
performed over T  seconds of integration

( ),dD ti t
T

0
= #

where the statistics in Equations (29) and (30) are still true, but we assume that 
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( )dth t 1B =# , such that the DC component is no longer filtered out. Again, defining

( )
,SNR

D D

D
2

/
G G H H

G H

-

it is straightforward to derive the SNR as

,SNR
T
T

N
N
1c

=
+

where all parameters are as defined before. Thus, when N 1% , the system is shot-noise-
limited and we have 

,SNR N
T
T

c
=

whereas when N 1& , excess noise dominates and the SNR saturates at

.SNR
T
T

c
=

To separate the SNR dependence on the integration time T , which is common to both the 
correlation and direct intensity measurements, it is convenient to normalize it to /T Tc
Figure 10 shows thus normalized SNR of a direct intensity measurement, Equation (38), 
and the asymptotic approximations, Equations (34) and (35), of a correlation measurement 
SNRs, as functions of the mean photoelectron number per mode. As seen from this figure, 
the correlation measurement SNR can approach the direct intensity measurement SNR 
for the sources with high spectral brightness, N 1. . The correlation-based measurements 
typically have worse SNR than direct intensity measurements when shot-noise-limited due 
to the dependence on the square of the incident average photon number in correlation 
measurements rather than just the photon number in direct intensity measurements. How-
ever, in the excess-noise-limited regime, the correlation measurements’ SNR improves due 
to the fact that such measurements can distinguish source fluctuations from those caused 
by an object better than the direct intensity measurement. Note, however, these plots 
compare the SNRs when the photoelectrons per mode are equal in both methods. Whereas 
correlation-based measurements require that T T<B c , thereby limiting the total flux incident 
on the detector, the direct intensity measurement can integrate over a very wide optical 
bandwidth, without penalty. We have already discussed this aspect of correlation imaging 
technique in Section II considering the example of solar spectrum.

Thus, in general, the SNR in the correlation measurement is worse than in the direct inten-
sity measurements. Nonetheless, in order to have a realistic assessment of the added value 
of correlation-based measurements for imaging space objects, one must take into account 
stray light, detector aging, natural variation of source brightness, and other practical effects 
that are usually omitted in the SNR analyses published to date. The detectors’ dark noise 
may be particularly important in cases when the incident photons flux is low. On the other 
hand, the correlation technique may be particularly beneficial for narrow-band imaging, 
e.g., imaging using a specific spectral line. A narrow spectral feature will lead to the higher 
spectral brightness and give the correlation imaging advantage according to Figure 10. 

(37)

(38)
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(40)
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VI. Conclusions and Summary

We investigate the possibility of performing intensity correlation ghost imaging of dark 
objects in space illuminated by thermal light sources (stars). Our approach hinges on replac-
ing the beam splitter, indispensable for thermal light ghost imaging but infeasible for space 
imaging, with the object itself. The absorptive and refractive properties of the object are 
predicted to imprint themselves on the intensity correlation properties of the transmitted 
and scattered light and could be extracted from the correlation measurements. To test this 
concept, we limited our discussion to a fully analytical model relying on a two-dimensional 
source and an object with Gaussian distribution of luminosity, absorption, or phase de-
lay (the latter representing a thin lens) in paraxial approximation. We demonstrated the 
variation of the far-field speckle size due to the presence of the object. We have shown that 
the speckle size variation is a nontrivial function of the object’s properties and position. 
In some cases, it allows us to distinguish different phase and amplitude objects even when 
they produce very similar shadows and can hardly be distinguished by a direct intensity 
measurement. Thus, the correlation measurement provides complementary information to 
a direct observation. 

This understanding has encouraged us to apply our analytical model to a realistic space 
object imaging scenario, such as the Kepler mission. Our prediction for the flux variation 
is very close to the actual observation. It also predicted a similar (about 10–4) fractional 
variation of the speckle size. We have carried out a preliminary SNR analysis for a correla-
tion measurement, comparing it to a direct flux measurement. The analysis has shown 
that, for parameters typical of the Kepler mission, the correlation measurement SNR would 
be significantly worse than the intensity measurement SNR. This analysis, however, does 
not include certain instrumental types of noise that may be detrimental for the intensity 
measurement more than for the correlation measurement and could potentially balance or 
even reverse the SNR’s inequality. These are the dark noise and variation of the detector’s 
responsivity (quantum efficiency) due to environmental fluctuations and aging. The ambi-

Figure 10. The normalized intensity SNR (red) and correlation measurement  

SNR for TB /Tc = 0.1(the lowest), 0.5, and 1. 
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ent background light is another important factor that needs to be considered. We plan to 
include these factors in the advanced noise model, which will be developed in the follow-
on research. 

Regardless of the technical noises, the correlation measurement SNR improves relative to 
the intensity measurement SNR when the spectral brightness of the signal increases. Thus, 
the correlation measurement may be especially advantageous in narrow-band imaging, e.g., 
imaging based on a selected spectral line. As a final note, comparison of the SNRs of two 
types of measurement is the decisive criterion when the measurements provide the same 
type of information. As we have seen, the correlation measurement can provide informa-
tion additional to the intensity measurement. Moreover, for predominantly phase space 
objects (such as, e.g., gravitational lenses or dilute gas clouds) producing little or no tell-tale 
shadows but affecting the optical coherence, correlation ghost imaging may be the pre-
ferred option.
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